
trtftr ' im iiiiiiw i w, hll>l l||Tr ^^

S»"'

An Algorithm for the Class of Pure Implicational Formulas

John Franco*1, Judy Goldsmith*5, John Schlipff, Ewald Speckenmeyer11,

R. P. Swaminathanll

Abstract

Heusch introduced the notion of pure implicational formulas. He showed that the falsifiability
problem for pure implicational formulas with k negations is solvable in time 0(nk). Such

falsifiability results are easily transformed to satisfiability results on CNF formulas.
We show that the falsifiability problem for pure implicational formulas is solvable in time

0(kkn2), which is polynomial for a fixed k. Thus this problem is fixed-parameter tractable.

1 Introduction

Since Cook's [1] proof of NP-completeness for 3-SAT, numerous studies of complexity of testing

satisfiability and/or falsifiability for particular classes of propositional formulas have been done.

Two important classes are CNF and DNF formulas. For CNF formulas, Cook showed that testing

satisfiability is NP-complete, whereas testing falsifiability can be done in linear time. For DNF the

reverse is true: testing satisfiability (resp. falsifiability) for DNF formulas can easily be reduced to

testing falsifiability (resp. satisfiability) for CNF formulas. Other classes of formulas, such as Horn,

extended Horn, q-Horn, and SLUR, have been shown to be solved in polynomial time (see [9] for

algorithms and credits). Recursively defined hierarchies of incrementally harder classes have also

been defined and studied [3, 5, 7]. Formulas on level k of these hierarchies typically can be solved

in 0(nk) time.

Downey and Fellows [4] considered hierarchies of problems. Levels of such a hierarchy are

distinguished by a parameter k which in some sense measures the density of an instance; any

algorithm to solve instances of length n for fixed Ar takes time bounded by some Cfc(l + nek). Now as

A; increases, does the value of e* increase, or does it hold steady while only the value of cj, increases?

An algorithm of the latter type they call fixed parameter tractable. Fixed parameter tractability

has obvious implications for algorithm efficiency on instances where n is much larger than k; for

more information about fixed parameter tractability we refer the reader to Downey and Fellows'

papers. In this paper we show that the falsifiability problem, described below, for pure implicational

*ECECS, University of Cincinnati, Cincinnati, Ohio 45221-0030.
'Supported in part by ONR grant N00014-94-1-0382.
'Computer Science Department, University of Kentucky, Lexington, Kentucky.
Supported in part by NSF grant CCR-9315354.
'Institut für Informatik, Universität zu Köln, Germany.
HRUTCOR and DIMACS Center, Rutgers University, Piscataway, New Jersey 08903-5062.

19970609 023
DTXO QUALHY INSPECTED 3

formulas of length n containing at most k occurrences of f, is fixed parameter tractable. In the

cases of [3, 5, 7], it is not known whether there are polynomial-time fixed parameter algorithms.

As far as we know, the results of this paper are the first fixed parameter tractability results for

hierarchies of satisfiability.

Following the work of Peter Heusch [6], we consider formulas in a different "normal form":

formulas built up from the proposition letters (or propositional variables) with -> (implication)

and a propositional constant f for false (so -if is always true) — plus parentheses, of course. Call

a formula built up with only these connectives pure implicational. We consider algorithms for

determining satisfiability and falsifiability of formulas containing at most two occurrences of each

proposition letter and at most k occurrences of f.

Actually, Heusch considered only falsifiability, and he did not allow occurrences of f. Rather, he

considered formulas whose only propositional connective is —►, which contain at most k occurrences

of some distinguished proposition letter z, and which contain at most two occurrences of every other

proposition letter. However, he showed that determining falsifiability was hardest in the case of

formulas of the form
a1-^(a2^(.. .-*(ah-+z))).

In this case z is set to false in every falsifying truth assignment. Thus it is equally difficult to

determine falsifiability of the formula

ai-*(a2->-(. • • -*-(«Ä-*f)))-

In this way Heusch essentially reduced his context to the one we use.

Since it slightly simplifies our arguments, we shall focus on satisfiability. It is equally difficult to

test for falsifiability and to test for satisfiability, since a formula <f> is satisfiable if and only if (<£-»-f)
is falsifiable, and <f> is falsifiable if and only if (0-+f) is satisfiable. Without loss of generality, we
limit the study to satisfiability of a single pure implicational formula <j>. For suppose cti,...,am

are pure implicational formulas. Then {ai,. ..,am} is satisfiable if and only if

ai->-(...-+(am-+f))

is falsifiable.

Theorem 1.1 (Heusch [6]) Testing falsifiability for pure implicational formulas containing at

most two occurrences of each proposition letter is NP-complete. E

Corollary 1.2 Testing satisfiability for pure implicational formulas containing at most two occur-

rences of each proposition letter is NP-complete. O

But by fixing the value of the extra parameter, the number of occurrences of f (or the number

of occurrences of z in his case), Heusch was able to get a type of tractability result for special cases.

From this point on, we use n to represent the length of a pure implicational formula.

Theorem 1.3 (Heusch [6]) Testing falsifiability for pure implicational formulas, oflengthn, con-

taining at most two occurrences of each proposition letter and at most k occurrences of f can be

performed in time 0(nk). n

The following corollary is trivial; we assume that more careful analysis of Heusch's proof would

easily change the k + 1 to a k below.

Corollary 1.4 Testing satisfiability for pure implicational formulas, of length n, containing at

most two occurrences of each proposition letter and at most k occurrences of f can be performed in

timeO(nk+1). n

The organization of the paper is as follows. In Section 2 we show how to transform pure

implicational formulas to a forest of trees containing no more nodes than the number of implication

connectives. The trees are such that there is a collection of "consistent paths," from root to leaf,

one for each tree, if and only if the original formula is satisfiable. The search for such a collection is

simplified by the fact that inconsistencies arise only between a leaf and its "shadow." In Section 3

we devise a 0(kkn2) algorithm for searching a forest for inconsistent paths. The collection of

algorithms used in all stages is presented as a whole at the end of the section.

2 Exploring possibilities

Our algorithm consists of three stages. The first consists of parsing and translating the given
formula into a different propositional form. The second constructs at most k trees of literals, where

k is the number of occurrences of f in the given formula. The third stage consists of solving a

combinatorial problem on the trees. The solution to this tree problem determines the satisfiability

of the given formula.

2.1 Initial parsing/translation

The first stage of the algorithm involves replacing a pure implicational formula </> with a set 0 =

{öi,..., ÖTO} (TO < n) of formulas in a larger set of proposition letters, where <f> is satisfiable if and

only if 0 is. I.e., (j> and 0 are equisatisfiable.

1. We start with a pure implicational formula, for example,

(((((ao-^ai)-*f)-*a2)->f)-v((f^ao)-*(o2-^f))).

We parse, counting levels of nesting to the left hand side of the -* 's; below we show nesting

on the left by dropping down to lower lines:

(ft -(ft ^(fl2-f)))-
(£ -f) (f-Oo)

(ft ->Ö2)
(| -*)
(a0-*ai)

2. Next, at even numbered levels (> 0) of nesting on the left, we first replace the embedded

formulas above with new proposition letters.

(j ->(j -(a3-f))).
(c0 -s-f) (f-^ao)

(£ -«2)
(* -f)

(o0->-ai)

In order to make sure that our new set of formulas and the original formula </> are equisat-

isfiable, we need also to relate c,-'s to the formulas they replace. It is natural to add in an

axiom c\ <-*(a0—>ai). That would, however, force cx to occur more than twice in our final

translation. Fortunately, we need assert only the -> direction of the equivalence to guarantee

equisatisfiability. Thus we get our translation, in this case a set 0 of three formulas:

(1 "*(fl. -*(°2-*f)))-
(c0 -*f) (f->ao)

c0- (ft -a2)

(ex -*)
cl~"*• (a0~"^l)

We sketch the proof of equisatisfiability: If the original formula <f> has a model v, we expand

i/ by setting i/(c,-) to the value under y of the corresponding subformula of <f>, which yields a

model of 0. Conversely, suppose v is a model of 0; we show that v is also a model of cj>. As

noted in our discussion of our intuition above, if for each c,-, I/(CJ) is the value of the formula

it replaces in the expansion above — i.e., if v(c0) = j/((ci->f)-»a2) and v(c\) = i>(ao-»ai),

then v is a model of </>. So suppose not. Pick all the highest level formulas for which this

property fails. For example, suppose here that u(c0) ^ z/((ci^f)-+a2). Since 0 contains the

formula c0 -> ((ci->f)-*a2), it must be that i/(cQ) = false and z/((ci-*-f)-»a2) = irue. From

the truth table for propositions nested an even number of times on the left of an -»•, we can

see that if the top formula is satisfied when v(c0) is false, it is satisfied with any formula

substituted in for CQ.

Note that now not only the original proposition letters (the a,-'s), but also the new ones (the

c;'s), occur at most twice in 0.

3. We now have three formulas in our set 0, each with at most one level of nesting on the

left-hand side of the -> 's.

0o = (co-f)-((f-ao)-(a2-f))

0\ = c0^((ci->f)-^a2)

02 = ci-»(a0->ai)

We finish with a simple substitution of tautologically equivalent formulas. We replace the

nested-on-the-lefi occurrences of —>■ with their DNF equivalents, yielding

00 = Hk>Vf)->((-.fVao)->(a2->f))

01 = co-K(->ciVf)->a2)

02 = ci-»-(ao-»ai);

we replace each remaining/?i->(/32^(.. .ßj)) with the equivalent -■/^-»■(-i/öiV-i/^V ... —>/3j_i),

yielding
0O = -,f -+ -i(-ic0Vf)V-.(-.fVao)V-.a2

0! = -ia2 -»■ (-icoV-i(-.ciVf))

02 = -IÖ1 —► -iCiV-iao;

and we simplify using deMorgan's laws and double negation, yielding finally

60 = -if -* (c0A->f)V(iA-iOo)V-ia2

0! = -ia2 -> (-iCoV(ciA-if))

#2 = -iß! —> -iciV-iao-

Comment 2.1 Note that any atom that occurs only positively can be set to true, without affecting

the satisfiability of these formulas. Therefore, before we continue, we perform this simplification.

(This simplifies later exposition, and can be done in time 0(n2).)

Note the important properties of 0:

• 0 and 4> are equisatisfiable.

• Each proposition letter — a; or ct- — occurs at most twice in 0.

• The constant f occurs k times in 0.

• Each 0; is an implication, whose hypothesis consists of a negative literal (either a ->a{ or a ->c;

or a -if), and whose conclusion consists of a disjunction, where each disjunct is the conjunct

of one negative literal and zero or more (zero or one in our example) positive literals.

All occurrences of f on the right-hand sides of the 0;'s could be simplified out, although our

algorithm assumes that we do not do so. The complexity of the algorithm will be given in terms

of the number k' < k of occurrences of -if on the left hand sides of the 0,'s.

2.2 Building trees of choices

We now have a collection 0 = {0X,..., 0m} of formulas as described above. As we noted earlier, our

strategy is now dual to the strategy of finding whether a set of Horn clauses is satisfiable. There
one starts with a default truth assignment of false to every variable and uses the implications to

identify variables which must be true. Here we start with a default truth assignment of true to

every variable and use the implications to identify choices of variables to set to false to satisfy

the formulas. If there are no occurrences of -if in the hypotheses of the 0;'s (i.e., k! = 0) then

{#!,.. . ,0m} is satisfied by the all-true assignment.

We want to search for a minimal change to the all-true truth assignment to satisfy {0i,..., 0m}.

To start out, we must satisfy each of the k' formulas with head -if. In order to do that we must

satisfy one of the disjuncts of each body. Suppose we satisfy a disjunct ->v, and suppose some other

9{ is -iv-*->wV-iX] then we will also have to set either tu or a; to false. To keep track of our choices,

for each such formula 0; = -if-»- ..., we build a tree T,- with root labeled -if. Associated with

each interior node and leaf of these trees will be a set of labels, corresponding to the literals in the

relevant disjunction of some formula, as described in the algorithm below. Later we shall find an
interpretation by choosing a branch through the tree; the literals labeling a node will be literals we

shall be forced to satisfy when the algorithm chooses that branch.

For notational convenience below, we assume that we have moved the 0,-'s with hypothesis -if

to 0i,...,0fe/.

Algorithm 2.1

For i — 1,..., k'

Build tree Ti as follows:

Create a root r,- labeled -if.
For each disjunct Z1A/2A • • • Alj of the consequent of 0,-,

6

Create a child of r; with labels /l5 /2,..., lj.

Mark that child unexplored

While there are unexplored nodes:
Pick any unexplored node w and mark it explored.

If the node has a negative literal ->a as a label

and does not have f as a label

If there is a 6j with hypothesis ->a
(there can be only one such 0j by the 2-occurrence restriction)

For each disjunct liAl2A ■ • • Mj of the consequent of 6j

Create a child of w with labels l\, l2, ■ ■ ■, lj

Mark that child unexplored.

Remove all nodes all of whose descendents are labeled f.

If a node does not have any children, mark it as a leaf.

As we build the trees, we also build the following:

• An array Occurrence, indexed by the proposition letters, whose index-a position contains

pointers to the (at most 2) occurrences of a in the T{ 's.

• For each node w, an array, indexed by the proposition letters, whose index-a position stores

whether a and/or ->a label nodes on the path to w from its tree's root.

Comment 2.2 We immediately use the auxiliary data structures for a simplification: if any neg-

ative literal -ia occurs negatively in two leaves, those leaves can, without loss of generality, be

removed, and their parent nodes marked as leaves.

It is easy to see how to construct the 0's and the T;'s in time n2. (That is almost certainly

not the optimal time. However, other phases of our satisfiability algorithm are also 0(n2), so this

suffices for our final analysis.)

We shall use the trees above to help us search for a satisfying truth assignment for {0i,..., 0m}.
We shall build up this assignment in stages, combining partial truth assignments. To simplify the

exposition, we introduce a notion of a set of literals satisfying such a formula. We shall consider a

truth assignment to be a set A of literals such that, for each proposition letter a, exactly one of a

and -ia is in A.

Definition 2.1 LetlMVC be the set of formulas whose only propositional connectives are f, -1,

-►, V, andV. For a set of literals, A, we say that A satisfies 6, written A\=S,forS£ 1MVC, if

the following hold.

. A |= -fM ¥=f-

• For I either a or ->a, a a proposition letter, A \= I if I G A.

• A \= aV/3 ifA\=aorA\=ß.

• A \= a/\ß if A \= a and A \= ß.

• A \= a^ß if A ft a or A |= ß.

Definition 2.2 Let T,- be one of the trees above and let P be any path on T; (from the root to any

leaf ofTi). Then Ap is the set of labels of nodes of P.

So, to satisfy {9i,...,9m} with a partial truth assignment we have an easy solution: First

pick one path P,- from each T; (1 < i < k'), and start with the interpretation AQ = Ap1 U

■•■U Ap ,. That is enough to satisfy chains of inferences starting with 0l5..., 0fc. Then set A =

.4oU{proposition letters v : v, -iv ^ AQ}. This (vacuously) satisfies all the 0,-'s not addressed before,

since each 0; that is not used in some T; has a negated literal as hypothesis. If 0; has hypothesis

-ia, and 6i was not used in the construction of any Tj, -io does not occur as a label in any of the

Tj's. Thus, ->a does not occur in Ao, so either a G Ao or a G A

The only difficulty with the above construction is that Ao may well be inconsistent, i.e., it may

contain both a and ->a for some proposition letter a. Thus we have:

Theorem 2.1 Let 6i,...,6m and T\, ...,Tk> be as above, and let A be a truth assignment. Then:

1. IM |= {0i,..., 0m} then there are paths Pi of T,-, i = l,...,k' such that Ap{ C A.

2. If (1) there are paths PiofTi,i = l,...,k' such that Api C A, and (2) if, for each proposition

letter a not appearing in any of the Pi 's, a G A, then A \= {0i,..., 0m}.

3. {0i,..., 0m} is satisfiable if and only if there are paths Pi ofTi, i= l,...,k' such that for no

atom a are both a and ->a in Ap1 U Ap2 U • • -Apk,.
a

Remark 2.2 The above theorem can be simplified further. Since each variable can appear at most

twice in {0i,.. .,0m}? and since a variable is used to label a node only when it appears as a conse-

quent in one of the 6i 's, the only way we can have both a, ->a in Ap1 U Ap2 U • • -Apk, is for a to

label some node of some Pi and for -<a to label the leaf of some Pj.

Note that, by the 2-occurrence property for atoms, and by the construction of the T,-'s, a

negative literal appears in these trees either uniquely in an interior node of some T,-, or in some leaf

(or possibly two leaves).

If we pick two paths, they are inconsistent with each other iff there is an atom a such that a

appears in one path, and -ia appears in the other. If this happens, then -ia is a label of some leaf

w. Therefore, if we wish to avoid inconsistencies, once we pick a leaf, w, with a label ->a, we must

avoid all paths through the (possibly nonexistent) node y with label a. In other words, no paths

can contain y, nor any of its descendants. We call the set of nodes in the subtree (cone) rooted at

y the shadow of w (Shadow(w)).

If a leaf does not have a negative label, we say it has an empty shadow.

Remark 2.3 Let {0X,..., 6m} and Ti,...,Tk< be as above. Then {0a,..., 0m} is satisfiable iff there

is a set of leaves w\ 6 1\,..., wy G T' where no W{ is in any WJ 's shadow.

Remark 2.4 Using the data structures specified in Algorithm 2.1, given any two leaves W{,Wj, we

can test in constant time whether wi € Shadow(wj).

2.3 The reduction to graph theory

In the previous subsections we reduced, in at most quadratic time, satisfiability of the original pure

implicational formula to the following combinatorial problem on trees, where n is the length of the

original formula <f> (including parentheses — this allows for our new constants c7i) and k' is less

than or equal to the number of occurrences of f in (j).

Remember the following facts:

• Ti,..., Ty are labeled trees, with a total of at most n nodes.

• There is a partial function Shadow from leaves to sets of nodes. For each leaf w, if Shadow(w) /

0, Shadow(w) consists of just the descendents of a single node in just one of the trees.

Definition 2.3

• A shadow-independent set in {7\,. ..,Ty} is a set of leaves {w{ € T; : 1 < i < k'} such that

no leaf Wi is in any Wj's shadow (including its own).

• The shadow problem for {Tl5...,Tfc/} is, "Does {Ti,...,Tfc/} have a shadow-independent

set?"

Proposition 2.5 If S\,S2 are two shadows, then one of the following must hold: (1) Si, 52 are

disjoint, (2) Si C S2, or (3) S2 C Sx.

A simple upper bound on the difficulty of the shadow problem can be found by reducing it to

the independent set problem. (Since this reduction gives only an upper bound on the complexity

of the problem, it is omitted.) Thus we can apply to the shadow problem any general algorithm

for finding whether a graph has a ^-independent set. The fastest known (at least to us) algorithm

is an 0(n^2+e)/3) algorithm by Nesetril and Poljak [8], where 2 + e is the best known exponent for

fast matrix multiplication (see [2]). This is an improvement on Heusch's algorithm, but it is still

not fixed parameter tractable.

Thus, short of showing that the fc-independent set problem is fixed parameter tractable, our

approach must amount, essentially, to finding special features of the resultant graph which allow

for faster algorithms. We already have such a result in Proposition 2.5. In the remaining sections

we show that the special features given in Proposition 2.5 are in fact strong enough: we give an

0(n2) algorithm (for each k) for this problem.

3 Solving the Shadow Problem

3.1 Easy Simplifications

Before we start, we identify, for each leaf w of each tree T;, the tree Tj in which Shadow(w) lies.

If w has an empty shadow, we pick an arbitrary tree Tj ^ T,- and declare that w has an empty

shadow in tree Tj.

Given the set of trees {Ti,.. .,Tfc/}, we can perform the following simplifications in quadratic

time. Clearly, none of the simplifications changes the answer to the shadow problem. Note that

the simplification steps must be repeated until no further changes are made or unfalsifiability has

been determined:

Algorithm 3.1 Repeat the following simplifications until there are no more simplifications to be

performed.

1. If any leaf shadows itself, delete the leaf — since no unshadowed set could contain such a leaf.

2. If any leaf's shadow is in its own tree, but does not include the leaf itself, delete the shadow

(i.e., remove the label -*a from the leaf and the label a from the base of the shadow) — since

we need to pick only one leaf from each tree anyway.

Redefine the leaf's shadow to be an empty shadow in some other tree.

3. If any leaf's shadow is an entire tree Ti, remove the leaf — since no unshadowed set could

contain such a leaf.

10

4. Remove any node which is not marked as a leaf, yet has no children. (This just prunes interior

nodes whose children have all been removed.)

5. If any node has only one child, merge it with its child, labeling the merged node with all literals

labeling either the original node or its child. If its child was a leaf, mark it as a leaf.

6. If any tree becomes empty, return "unsatisfiable".

Remark 3.1 Algorithm 3.1 can be performed in time 0(n2).

3.2 A partition into shadow patterns

To find a shadow-independent set of leaves, we must pick one leaf from each tree. Think of a

directed edge going from the leaf's tree to the shadow's tree (which, by the simplifications above,

must be a different tree). Call the resultant graph on the k trees the shadow pattern of that set of

leaves. Note that each node in a shadow pattern has out-degree one, so there are (k - l)k possible

shadow patterns on the k trees. We shall partition our algorithm by looking separately at each of

the (k - l)k possible shadow patterns, checking to find if there is an unshadowed set inducing that

shadow pattern.

Say that a leaf /; matches a shadow pattern P if U is in tree T;, the edge in the shadow pattern

from T{ goes to Tj, and /,'s shadow is in Tj. A set of leaves matches a shadow pattern if every leaf

in the set matches the pattern.

Note that, to search for a shadow-independent set matching a shadow pattern Ph, we can clearly

search each weakly connected component of Ph (i.e., each component of the undirected version of

Ph) separately. The following algorithm is then clearly correct, since each choice of k leaves, one

from each tree, matches one of the shadow patterns. We use it as the outside control of our solution

algorithm.

Algorithm 3.2

For each shadow pattern Ph, 1 < h < (k - l)k,

Make a copy T/1 of each of the original trees T;

Delete from T-1 all leaves which do not match shadow pattern Ph.

Simplify Tf as in Algorithm 3.1.

For each weakly connected component W of Ph
search for a shadow-independent set onW. (|)

// every weakly connected component has a shadow-independent set

return "satisfiable."

Return "unsatisfiable".

11

The difficulty, of course, is in step (f). We shall show that we can implement that step in

O(n^), where nw is the total number of nodes in the trees T/1 € W. It will Mow that the above

algorithm can be performed in time 0(kkn2), since we have already noted that Algorithm 3.1 takes

only quadratic time. (Clearly, it suffices to caU Algorithm 3.1 on each component W separately.)

3.3 Solving for a fixed component of a fixed shadow pattern

All that is left is to show, as promised above, that we can test whether a weakly connected compo-

nent {T% ,..., T% } of {T/1,..., T£} has a shadow-independent set in time quadratic in the number

of nodes in the component. The essential intuition used by the algorithm is the following:

1. In acyclic parts of the component, we can easily perform the test by brute force, working our

way in from the leaves. We do this by pruning away nodes which cannot be in a shadow-

independent set.

2. In the cyclic part of the graph, we show that, unless the pattern of shadows (after the pruning
described above) has a specific, easily recognized structure described in Theorem 3.3, there

is a shadow-independent set.

Since Ph is a directed graph on k nodes where each vertex has out-degree one, each of its

weakly-connected components is a directed tree with edges directed toward the root plus one back
edge. Or, another way of looking at it, each component consists of a single directed cycle c plus a

set of mutually disjoint trees {<i,..., tr} (directed from leaves to root), where the root of each tree
is also a member of the cycle, and otherwise the cycle and the trees are disjoint. We start with a

separate pruning algorithm for the trees f,-:

Algorithm 3.3

Pruning Algorithm:

Input: A component W of Ph along with the member trees T-1, consisting of:

1. A collection of mutually disjoint trees, t\,..., tf, and

2. A single cycle c, where

a. the roots of the tg 's are elements of c,

b. no other nodes are shared by the tgs and c.

The nodes of c and the tg 's are all trees T-1 created before.

Action:
From each tree, prune those nodes that cannot be in any shadow-independent set.

Identify the c and the tg 's.

12

For each tree tg

For each node TJ1 oftg, starting with the leaves oftg

and working backwards to the root

If r/1 has children in tg

For each child Tf ofTf in tg

For each leaf w of Tf
If w is in the shadow of every leaf of Tf

delete w from Tj1.

Simplify W as in Algorithm 3.1.
If the simplification algorithm returned "unsatisfiable"

return that there is no shadow-independent set matching Ph.

Lemma 3.2

1. If a leaf U of a tree Tj1 is deleted by Algorithm 3.3, that leaf cannot be included in any

shadow-independent set from the input trees matching the given shadow pattern.

2. If the pruning algorithm returns that there is no shadow-independent set matching Ph (last

line of the algorithm), then that result is correct.

3. Every shadow-independent set on the cycle c, after the pruning algorithm is finished, can be

expanded to a shadow-independent set on all of the component W.

4. The total running time of Algorithm 3.3 is 0(\W\2), where by \W\ we mean the total number

of nodes in all the member trees T-1 in W.

Proof:

1. Straightforward.

2. If the simplification algorithm reports unsatisfiability, it is because one of its trees has become

empty. If any tree becomes empty, there are no leaves left to put into the shadow-independent

set.

3. Suppose we have a shadow-independent set i" on the pruned cycle c. Remember that some

elements of c are roots of trees tg and thus have been pruned. We must expand I to a shadow-

independent set on all of W. Remember also that every tree has its root in c. Working out

from the roots of the trees tg to the leaves of the ia's, we have by construction, that no matter

what leaf I we picked for the independent set in the parent node T-1 in some tg, we can pick

leaves /' in each of the children Tf (children in tg) which do not shadow I. Pick any such /"s

and continue recursively.

13

4. The cycle c and the trees tg can be identified by a standard depth-first search. Since the

search is just on W, the time is 0(|W|). The remainder of the algorithm is basically a matter

of checking through all pairs of leaves from adjacent trees, hence the quadratic bound. D

Definition 3.1 By a leaf-descendent of a node x of a tree, we mean any descendent of x which

happens to be a leaf, or x itself if that is a leaf.

Theorem 3.3 Let c be a simple cycle in Ph as above, containing trees TQ, .. .,T^,,_1. (We simply

renumber the trees to get them numbered as stated.) There is no shadow-independent set of leaves

from TQ,..., Ty,_x matching Ph, if and only if the following condition holds:

Condition (|):

After Algorithm 3.1 is called (again) on IQ1
 U.. .UTt

fc
M, either some Tf becomes empty

or

1. the root of each of these T-1 's has exactly two children — call them c?e$ and Cirt9ht

(in some order);

2. if we choose which child of the root of each T-1 to name c^1 and which Cirtght

correctly, every leaf-descendent of c^ (resp., Ciright) has the same shadow, which

is

for i < k" - 1: C(,-+1)r,ff/,t (resp. C(i+1)'e#) and all of its descendents, or

for i = k" - 1: Cole^ (resp. Con9ht) and all of its descendents.

Proof:

=>: We are given the cycle c consisting of T0\.. .,T^,_a. By the simplifications (Algorithm 3.1)

we performed, each T-1 either (i) consists of just one node, which is not in the shadow of any

other node in TQ ,..., T^,_15 or (ii) has at least two children, and no node in c shadows more

than one of these children.

We start by looking at a very gross approximation to the existence of a shadow-independent

set. For each T-1 consisting of more than a single node (and hence having at least two children

of the root by our simplifications), let Aff,..., M4
C' be the maximal subtrees of T/1, i.e. the

subtrees starting at the children of the root. For the single node T/"s, let M? = TJ1. Now we
build a directed accessibility graph Q on these Af/'s. One can think of Q as the cycle c with

most of its nodes — those T/'s which are nontrivial — split into pieces, one per subtree at

the root of if.

The nodes of Q are the Af/'s. There is a directed edge in Q from M{ to ^'+1)mod(jk/#) if there

is a leaf of M\ whose shadow is disjoint from MJ
(i+l)mo^(k„y Since no leaf of Ml snadows

14

more than one of the M3' j,,,n's, there are edges from each M/ to at least all but one of

the M^i)mod(fc»)'S' and lf th6re iS °nly °ne M^i)mod(*»)' then there iS an ed§e fr°m Ml

to M3'. i, „.. Thus also there is at least one edge out of each M\.

Now we claim that if Q has a A/'-cycle then {T0\ . ..,T^,_X} has a shadow independent set.

For suppose M$>, Mf,..., M$'ji is a *"-cycle. By the definition of Q, there is a leaf U in

each Mf whose shadow is disjoint from A^+Y)mod(n" Pick any SUch se(luence of leaves

l0, h,..., h"-i- Clearly, {/0, 'i, • • •, h"-i} is shadow-independent.

The basic strategy for constructing a shadow-independent set from Q is this: out of each node

M\ there is at least one edge in Q. So do a depth first search of Q to find out what nodes

of Q are accessible from each M3
Q in e edges, 1 < e < k". (This search is in the correctness

proof; our algorithm does not need to perform the search since it does not need to construct

the satisfying assignment: it needs only to determine whether one exists.) It follows from the

above that, from each Mjj, (1) some node M3
0 is accessible in k" edges, and (2) all but at

most one of the M3
0 's are accessible in k" steps.

We first show that if Q has no ^''-cycles then the root of each T/1 has exactly two children. First

suppose the root of some T/1 has only one child; without loss of generality, we may assume it

to be TQ. Since we performed Algorithm 3.1 immediately before entering this phase, Tft has

only one node, and M$ = T0\ Tracing forward k" steps along any path through Q, we come
back to some M3

Q — and thus to MQ , since that's the only one there is. This gives a directed

k" cycle, and thus an unshadowed set.

Next, suppose that there is no shadow-independent set, and every T/'s root has at least two

children, but that some T/ has more than 2 children. Without loss of generality, we may

assume that 2V'-i's root has at least 3 children. Consider the nodes in Q accessible in k" - 1

and in k" edges from M$ and MQ
1
. At least two of M^,_15 M^,_x, and Ml„_x are accessible

from each of M% and MQ
1
; thus one of them, M3

kll_x, is accessible from both. Now there must
be an edge from M{„_x to at least one of M$ and M^; this edge will complete a k" cycle.

That completes showing property (|1).

Next we show part of property (1.2): assuming that there is no shadow-independent set, out

of each MJ there is exactly one edge in Q. Without loss of generality, choose M0
lefi = M$ and

MQright -M^. We know there is a path of length k" out of M0
left\ since we assumed there is

no shadow-independent set in the Tf's, and hence fc"-cycle in G, every such path must lead to

M0
ri9ht. Similarly, there is a fc"-length path out of M0

ri9ht, and every such path must lead to

MQle}t. Finally, if there were more than one fc"-length path out of either — say out of M0'
e^

— then one of those paths would have to share a node with the path out of MQ"
9
 ', which

would imply the existence of a fc"-cycle. (Thus we see that Q is a simple Ik" cycle, doubled

15

up on c like a Möbius strip.) Without loss of generality, we may call the nodes of Q accessible

from M0
left (resp., M0

right) in i edges, 1 < i < k" - 1, M^ (resp., Miright), and we have

that the only edge out of My,^ (resp., ilW'^) goes to M0
right (resp., M0

/e#).

Now we prove the rest of property (|2). Suppose that there is some i where there is a leaf

of Milefi whose shadow is not all of Mi+1
right. (The case for some leaf of Miright whose

shadow is not all of Mi+ile^ is analogous.) Without loss of generality, we may assume that

i = 0. We shall now construct a k"-cyc\e in Q, contradicting the assumption that there is no

shadow-independent set in the set of Tf's.

Pick w0 to be a leaf in M0
hft whose shadow is not all of Minght, and pick wx to be any leaf

of Miri9ht which is not in the shadow of w0. For i = 2,.. .,k", pick to; to be any leaf of

MirigU. By our choice of w0, wi, w0 does not shadow w\. By our analysis above, Wi does not

shadow W{+i for any i < k" - 1. Finally, again by our analysis above, since Wk"-i £ M{rig l,

the shadow of uv-i is in M0
nght, so Wk"-\ does not shadow w0. So we have constructed a

fc"-cycle, contradicting our assumption.

<S=: Obvious. n

Proposition 3.4 Condition ({) o/ Theorem 3.3 can be checked in time 0(\W\). (\W\ is defined

in Lemma 3.2.)

Assembling all the pieces we have constructed we have a faster algorithm for checking satisfia-

bility for our class of pure implicational formulas, giving our fixed parameter tractability result.

Algorithm 3.4 The Combined Algorithm

Input: Pure implicational formula <f> with each proposition letter occurring

at most twice

Output: "Satisfiable" or "Unsatisfiable"

Translate cf> to equisatisfiable formulas {6\,..., 6k'}, as in Section 2.

Fori = l,...,k'
Build tree T; as follows:

Create a root T{ labeled -if.

For each disjunct hhhS • • ■ Mj of the consequent of 9{,

Create a child of r; labeled li,l2,- ■ -Jj-

Mark that child unexplored

While there are unexplored leaves:

Pick any unexplored leaf w and mark it explored.

If the leaf has an negative literal ->a as a label

16

and does note have f as a label

If there is a 6j with hypothesis ->a
(there can be only one such 6j by the 2-occurrence restriction)

For each disjunct l\AhA • • • Alj of the consequent of 6j

Create a child of w labeled /1A/2A • • • Alj

Mark that child unexplored.

Remove all nodes all of whose descendents are labeled f.

For each shadow pattern Ph, 1 < h < (k - 1) ,

Make a copy T/1 of each of the original trees T{

Delete from T-1 all leaves which do not match shadow pattern Ph ■
Simplify T-1 as in Algorithm 3.1.

If the simplification algorithm returned "unsatisfiable"

continue to next Ph

For each shadow pattern Ph, 1 < h < (k — l)k,
Identify the weakly connected components of Ph

For each weakly connected component W of Ph

Identify the cycle c and the attached trees tg of Ph

For each tree tg

For each node T-1 of tg, starting with the leaves of tg

and working backwards to the root

If T/1 has children in tg

For each child Tf of TJ1 in tg

For each leaf w of T-1

If w is in the shadow of every leaf of Tf

delete w from Tf1.

Simplify W as in Algorithm 3.1.
If the simplification algorithm returned "unsatisfiable"

continue to the next Ph-

else
test the cycle c for property (|) of Theorem 3.3

If property (|) fails for c, continue to next Ph

Return "Satisfiable".

Return "Unsatisfiable".

Putting together the previous complexity results, we have that:

Theorem 3.5 Satisfiability for pure implicational formulas with at most two occurrences of each

proposition letter and at most k occurrences ofi can be checked in time 0(kk ■ n2). □

17

4 Boolean functions representable by pure implicational formu-

las

It is well known that there are Boolean functions which cannot be represented by pure implicational

formulas, while any such functions can be represented by implicational formulas which allow for

occurences of the Boolean constant f. We address the question of characterizing those Boolean

functions which can be represented by pure implicational formulas and show that the number of

such functions is surprisingly large.

A Boolean function <p : Bn -»■ B is called an implk&nt of the Boolean function ip iff <p —> ip is a

tautology.

Theorem 4.1 A Boolean function ip : Bn —»• B is representable by a pure implicational formula <fi

iff there is a Boolean variable z, which is an implicant of ip

Proof:

Suppose i\> is represented by the pure implicational formula <j>. Then <f> has the form fa —* (fa —>

... (fa —► z) ■ ■ •)> where z is the rightmost variable of <j>.

It is easy to see that assigning z to true results in the value of true for <f>. That is, z is an

implicant of <j) and so of ip.

Now suppose the variable z is an implicant of ip. That is, z —► ip is a tautology. Denote by

tpz=f : Bn~l —> B the Boolean function defined by i\) when assigning z to false. Dehne ipz=t the

same way, assigning z to true. Applying Shannon decomposition to ip and z we obtain:

i; = (z/\fa=t)\/(zMpz=f)
= z\l i>z=f (because z is an implicant of ip)

= (^ _» z) —► z (fa is a Boolean formula representing ipz=f

consisting of Boolean variables, the con-

stant fand the operator —►.)

= (<£2 _>. z) _* z (</>2is obtained from fa by substituting ev-

ery occurence of f in fa by the variable

z. That is, fa is a pure implicational for-

mula.)

18

and <£ is a pure implicational formula. a

Our proof of Theorem 4.1. tells us more about Boolean functions representable by pure impli-

cational formulas. If i> is representable by a pure implicational formula then there is a Boolean

variable z, which is an implicant of ip. If we fix however the value of z to false, the function

V>z=f : B71'1 ->■ B can be an arbitrary Boolean function without any restriction. This immediately
yields upper and lower bounds on the number in of Boolean functions ip : Bn -> B representable

by pure implicational formulas.

Corollary 4.2 22""1 < in < n22" '. □

From Corollary 4.2, the number of Boolean functions in n arguments representable by pure

implicational formulas is about the square root of the number of all Boolean function in n arguments.

References

[1] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third ACM

Symposium on Theory of Computing, pages 151-158, 1971.

[2] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication:

extended summary. Proc. of the 22nd Symposium on Foundations of Computer Science, pages

82-90, 1981.

[3] M. Dalai, and D. W. Etherington. A hierarchy of tractable satisfiability problems. Information

Processing letters 44:173-180, 1992.

[4] R. G. Downey, and M. R. Fellows. Fixed parameter tractability and NP-completeness. Con-

gressus Numeratum 87, pages 161-178, 1992.

[5] G. Gallo, and M. G. Scutella. Polynomially solvable satisfiability problems. Information

Processing Letters 29:221-227, 1988.

[6] P. Heusch. The complexity of the falsifiability problem for pure implicational formulas. Proc.

20th Int'l Symposium on Mathematical Foundations of Computer Science (MFCS'95), J.

Wiedermann, P. Hajek (Eds.), Prague, Czech Republic. Lecture Notes in Computer Science

(LNCS 969), Springer-Verlag, Berlin, pages 221-226, 1995.

[7] H. Kleine Büning. On generalized Horn formulas and k resolution. Theoretical Computer

Science 116, pages 405-413, 1993.

19

[8] J. Nesetfil and S. Poljak. On the asymptotic complexity of matrix multiplication. Commen-

tationes Mathematicae Unversitatis Carolinae 26, pages 415-419, 1985.

[9] K. Truemper. Effective Logic Computation. To appear in 1996.

20

